TECHNICAL RESEARCH REPORT

A Motion Description Language and a Hybrid
Architecture for Motion Planning with

Nonholonomic Robots

by V. Manikonda, P.S. Krishnaprasad

J. Hendler

T.R. 95-19

INSTITUTE FOR SYSTEMS RESEARCH|

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1995 2. REPORT TYPE 00-00-1995 to 00-00-1995
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Motion Description Language and a Hybrid Architecture for Motion
Planning with Nonholonomic Robots

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Electrical Engineering,I nstitute for Systems REPORT NUMBER
Resear ch,University of Maryland,College Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 22
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



A Motion Description Language and a Hybrid
Architecture for Motion Planning with

Nonholonomic Robots *

Vikram Manikonda and P.S. Krishnaprasad James Hendler
Dept. of Electrical Engineering & Dept. of Computer Science &
Institute for Systems Research Institute for Systems Research
The University of Maryland The University of Maryland
College Park, MD 20742 College Park, MD 20742
{vikram, krishna}@isr.umd.edu hendler@cs.umd.edu

Keywords: Motion Language, Nonholonomic Systems, Kinetic State Machines, Hybrid

Architecture.

Abstract - This paper puts forward a formal basis for behavior-based robotics, using
techniques that have been successful in control-theory-based approaches for steering and
stabilizing robots that are subject to nonholonomic constraints. In particular, behaviors
for robots are formalized in terms of kinetic state machines, a motion description lan-
guage, and the interaction of the kinetic state machine with real-time information from
(limited range) sensors. This formalization allows us to create a mathematical basis for
the study of such systems, including techniques for integrating sets of behaviors. In addi-
tion we suggest optimality criteria for comparing both atomic and compound behaviors

in various environments. A hybrid architecture for the implementation of path planners

*This research was supported in parts by grants from the National Science Foundation’s Engineering
Research Centers Program: NSFD CDR. 8803012, the AFOSR. University Research Initiative Program,
under grant AFOSR-90-0105, and AFOSR-F49620-92-J-0500, from NSF(IRI-9306580), ONR, (N00014-
J-91-1451), AFOSR (F49620-93-1-0065), the ARPA/Rome Laboratory Planning Initiative (F30602-93-
C-0039 and by ARI (MDA-903-92-R-0035, subcontract through Microelectronics and Design, Inc.)



that uses the motion description language is also presented.

1 Introduction

Traditional robot motion planning and obstacle avoidance concentrates on determining
a path in the presence of holonomic or integrable, equality and inequality constraints on
the configuration space. In practice however many robotic systems include constraints
that are not holonomic. Such kinematic constraints cannot be reduced to equivalent
constraints on the configuration variables which are explicit functions of position variables

(e.g. a front wheel drive car, object manipulation by rolling with a robotic hand).

Often such drift-free (completely) nonholonomic systems, where the number of controls
is less than the number of states, are controllable. Papers [1, 2, 3, 4] present analytical
tools based on Lie algebras to generate control sequences to steer such systems. The
use of sinusoids in such problems is already anticipated in the work of Brockett on
Singular Riemannian Geometry [5]. As these nonholonomic, drift-free systems do not
satisfy Brockett’s necessary condition for smooth stabilization [6], these systems cannot
be stabilized to the origin in state space by using smooth time-invariant state feedback.
This reinforces the need for alternatives such as piecewise smooth feedback controllers [7],
time-varying periodic controllers [8] and explicit control design to generate time-varying

stabilizable control laws [9].

While a majority of the above research on steering and stabilization of nonholonomic
systems [10] assumes an obstacle-free world, we note that the problem of autonomous
path planning and obstacle avoidance with nonholonomic robots is a nontrivial one.
Modeling obstacles as constraints in the configuration space and then designing control
laws is a complex problem. In addition deriving control laws for limited range sensors

with imperfect and uncertain information poses additional problems.
In the Al literature there is growing interest in using reactive, sensor-based behaviors
to solve path planning problems given little or no a prior: information, inspired by the

work of Rodney Brooks [11]. The idea here is to rely on the direct coupling of sensory



information and actuators. This approach in contrast with methods based on control
theory, has resisted mathematical formalization and is not amenable to tests for optimal-
ity. Arguably, a better understanding of the properties of nonholonomic systems, would
enable one to exploit the underlying geometry along with real-time sensor information
for path planning and obstacle avoidance. Hence there is a need for a framework that can
capture and integrate features of both modern control-theoretic techniques and reactive

planning methods.

In this paper, we introduce a motion description language which we call MDLe (to
denote its relationship as an extension of Brockett’s motion description language, MDL,
[12, 13]), that can encode and integrate aspects of modern control theory approaches
to steering nonholonomic robots with those of reactive-planning systems that rely on
the direct coupling of sensory information and actuators. This is done by introducing
sensor-driven trigger functions into MDL atoms. This motion description language also
gives us the means to formalize concepts such as “behavior”, “plan” etc. used in the
path planning literature. We also introduce a hybrid architecture for path planning and
obstacle avoidance that utilizes the formalism of this paper. For other related work

inspired by Brockett’s MDL, see [14].

In section 2 we present details of MDLe, examples of obstacle avoidance problems
modeled in the framework of the language and suggest some optimality criteria. The
hybrid architecture is discussed in section 3. A brief outline of a planner that generates
“behaviors” for path planning and obstacle avoidance is also given. Section 4 includes

final remarks and future research directions.

2 Language for Motion Planning

We treat a nonholonomic robot as a kinetic state machine (following Brockett [12]) which
can be thought of as a continuous analog of a finite automaton. In the framework of

MDLe these kinetic state machines are governed by differential equations of the form



b= Y b y=hiz) € R )

m
i=1

where
z(-) : R* =[0,00) —» R”
u;: RYxRF —» R
ty(0) = wilty()
Further each b; is a vector field in R".

We now define the atoms of the motion language as triples of the form (U, &, T') where
U= (uy, - up)
where u; is as defined earlier,

¢&: RF - {01}

s(t) — &(s(2))
is a boolean function, T € R* and s(-) : [0,7] — RF is a k dimensional signal that
represents the output of the k£ sensors. £ can be interpreted as an interrupt or trigger to
the system which is activated in a case of emergency, e.g. the robot gets too close to an
obstacle. Let us denote by T, (measured with respect to the initiation of the atom) the
time at which an interrupt was received i.e. £ changes state from 1 to 0. The definition
of an atom here can be compared with that in MDL [12] where Brockett seems to treat

time-outs in T, instead of giving explicit status to triggers.
If at time ¢, the kinetic state machine receives an input atom (U, £, T) the state will
evolve governed by the differential equation (1), as
&= B(z)U, YVt to<t< to+min[T,T).

If the kinetic state machine receives an input string (U1, &, T1) - -+ (Un, &n, Tn) then the
state z will evolve according to
i = B@)U, ty<t< to+min[T},Ty.
& = B(@)U,, to+-++min[T,_1,Tho1] @)
<t< tg+--- +min[T;,Tn].



Hence we may denote a kinetic state machine as a seven-tuple (U, X, Y, S, B, h,£), where

U =C®(R* x R’; R™) is an input (control) space,
X = IR" is the state space,

Y = R? is an output space,

S c RF is the sensor signal space,

B is an R™™ matrix (kinematic constraints matrix),
h: X — Y maps the state space to the output space
and

€:8 — {0,1} maps the sensor output to the set {0,1}.

As another point of departure from MDL, we find it useful to bring input scaling into

the picture. This provides considerable flexibility as in the examples of section 2.1.

Definition: Given an atom, (U, &, T), define (U, £, 8T), a € R, 8 € RY as the corre-
sponding scaled atom and denote it as (o, 5)(U,&,T).

Definition: An alphabet ¥ is a finite set of atoms, i.e (U,£,T) triples. Thus ¥ =
{(U1,&1,Th),- -+, (Un, €n, Tn)} for some finite n or equivalently ¥ = {oy,--,0,} where
o; denotes the triple (U;,&;,T;), such that o; # (o, 8)(0;) @ € R, 8 € RY and 1 =
1,--m, j=1---n.

We find it very useful to formalize scaling into the language and hence introduce the
notions of extended alphabet and language.

To simplify notation in the rest of the discussion we denote the scaled atom (1,1)o;
simply by o;.

Definition: An extended alphabet ¥, is the infinite set of scaled atoms, i.e. triples

(aU, €, BT) derived from the alphabet .
Definition: A language ¥* (respectively ¥}) is defined as the set of all strings over the
fixed alphabet ¥ (respectively extended alphabet %.).

Definition: A behavior 7 is an element (i.e. word) of the extended language X*. For ex-

ample, given an alphabet ¥ = {01, 02}, a behavior 7 could be the string (a1, 81)01 (a2, B2)

o2 (as, B3)or.



Remark: To account for constraints one might limit behaviors to lie in a sublanguage

B C %j. This will be explored in future work.

Definition: The length of a behavior denoted by || is the number of atoms (or scaled

atoms) in the behavior.

Definition: The duration T(7) of a behavior

T = (041, Bi1) (Uin, &, Tia) + + - (0ur, Biy) (Ui, &iry Tit)

executed beginning at time ¢, is the sum of the time intervals for which each of the atoms

in the behavior was executed. That is,
T(m) = to + min[Ty, BiyT] + - - - + min[Ty, B Ty] (3)

Definition: Given a kinetic state machine and a world-model, a plan T is defined as
an ordered sequence of behaviors, which when executed achieves the given goal. For
example a plan ' = {m3m 7, - - -} could be generated from a given language where each
behavior is executed in the order in which they appear in the plan. The length of a plan
I' is given by |I'| = ¥ |m;| and the duration of the plan is given by T(I') = > T'(m;). In a

particular context there may be more than one plan that achieves a given goal.

Remark: Since each atom when executed by a kinetic state machine, combines in general
both open loop and feedback controls, one could argue that our definition of behavior
captures some aspects of the essence of locomotion behavior c.f. [15], as well as the sense
in which the term is used by Brooks [11]. Further the passage from atoms to behaviors

to plans suggests a layered architecture as we shall see below.

We now state a proposition that to some extent answers the question of the existence
of an alphabet X (respectively ¥.) which can be used to generate behaviors and hence

plans to achieve the required goal.

Proposition 1 Given an obstacle-free environment and a kinetic state machine that is

governed by the differential equation

= bjz)u; r € R",ue R™ (4)
i=1

6



such that the control Lie algebra (i.e. the vector space spanned at any point by all the Lie
brackets of the vector fields b;) has rank n, then there exists an alphabet ¥ (respectively
Ee) which can be used to generate behaviors (and hence plans) to steer the system from

a giwen initial state x, to a final state xy.

Proof: From Chow’s [16] theorem we know that if the control Lie Algebra has rank n
then the system is controllable. This implies there there exist piecewise constant controls
u: [0,T] = R™,T > 0 that steer the system from any initial state z,(0) to any final
state z7(T).

A simple alphabet that can be used to generate behaviors consists of m triples of the

form (Uy,1,1),-+,(Un,1,1) @ € R, 8 € R* where

Ul = (170,();0,""0)’
U, = (0,1,0,0,--,0)

Um:(070707"'70’1), O

Example 1. Consider the problem of path planning with a unicycle, with a single sensor,
that wanders around in a given environment without colliding into obstacles (analogous
to the idea of the first level of competence in Brooks [11] ). Let us assume the task of the
robot (unicycle) in this case is to wander till it senses an obstacle. If it senses an obstacle
it avoids the obstacle and continues to wander around. We now formulate and solve this
problem treating the unicycle with its sensor as a kinetic state machine and find a plan

that solves the problem. The differential equations governing the kinetic state machine

are
& = wycosf (5)
Yy = wysinf (6)
é = UV (7)

where (z,y) € IR? denotes the position of the unicycle w.r.t some inertial frame, 6 € S?

denotes the orientation of the unicycle relative to the horizontal axis, v; and v,, the

7



velocity of the unicycle and the angular velocity respectively are the inputs to the kinetic
state machine. With reference to the standard notation (1), we identify u; = vy, ug = vs,
by = (cos8,sin4,0)’ and by = (0,0,1)".

To generate the “wander behavior” (wander in a given environment without colliding

into obstacles) let us consider the following atoms:

gy = (Ul,fl,Tl) where

U =(1,0)

1 ifp>10
& =

0 ifp<10
T, € (0,00)

where p is the distance between the robot and the obstacle that is returned by the sensor.

oy = (Us, &, T5) where

Uz =(0,1)
0 ifp>10
&=
1 ifp<10
T2 € (0, OO)
O3 = (U3,€3,T3) where
Us =(0,1)
=1
T3 € (0,00)

Let & € [@min, ¥maz| and B € [0, 00]. Now consider the following atomic behaviors
m = (aLIB%)(Ulvé’la 1)
Mo = (a%’ ﬁ%)(U% §27 1)

T3 = (a?’ /8:13) (US’ 53, 1)

Based on the equations of this robot, the behavior 7, is interpreted as “move forward”
with a velocity of ! units/sec for 8] seconds, and behaviors 7, and 73 can be interpreted

as “turn” with a velocity of of deg/sec for maximum of 3¢ seconds (here i = 1,2, 3) i.e.,

8



turn counter clockwise by a maximum of 8¢ degrees, unless interrupted. As explained
earlier the atoms of each behavior will only execute as long as their respective £ functions
are 1 and the time of execution is less than T. Hence, once 73 begins executing it continues

until ¢ = 83 since & = 1 in the entire interval, [0, 53].

ut,u2
(=] n B
T T T I

J — ul
—- w2
-6}
"0 50 100 150 200 250

time

Figure 1: Trajectory and Inputs Generated by the Plan I’y
Consider the plan I'; = ((5,100)7(—1,90)73)" i.e.

Fl = {(a%7 1811)77-1 (a:i}ngio’)ﬂ-:i (a%wgll)ﬂ-l (Ol?, 18?)71-3 o }

Observe that, if this plan is executed in the environment (with walls W1 and W2) as
shown in the Fig. 1, the robot will move forward for time ¢, £, <t < to + 100, where %, is
the time at which the behavior was started, when & will interrupt it (too close to W1).
Let us assume that the interrupt was received at ¢y -+ Tz The execution of behavior 7 is
then inhibited, behavior 73 is picked up from the queue and is executed. As &3 = 1 in the
entire interval ¢t € [ty + T;, to + ’T\l + 90) the robot will then turn clockwise by 90 degrees
and then it will move forward (execute behavior 7). But again after some finite time
wall W2 (see Fig. 1) will cause & = 0 and hence interrupt the move forward behavior.
Behavior 73 is executed as earlier i.e. the robot turns clockwise by 90 degrees, and now
continues to move forward. If it does not detect an obstacle at the end of 100 seconds
since it began moving forward, it will stop, turn clockwise by 90 degrees, and continue

to repeat the sequence of actions.



Now consider the plan T'y = ((50,2)m(—20,5)m,)*. Observe that, if this plan is
executed in the same environment (see Fig. 2}, then while executing the “move forward”
i.e. m, in the time interval {; < t < ty + 2 the robot realizes that the obstacle is at a
distance less than 10 units from it and hence &; interrupts the “move forward ” and the
robot begins to execute “turn right”. Due to the choice of the interrupt function &, the
robot will now switch between “turn right” and and “move forward” (a condition reffered
to as chattering) and trace a trajectory as shown in the figure. Hence depending on the

choice of the alphabet one can generate different plans to achieve the same task.

100
wi1 80
so}
40P
20f
we | 2 o-—-—
% I O AR T 1 N P A T 5
a0k
wof — ut
sf —- U2
~1005 2 r s ' 10 i3

time

Figure 2: Trajectory and Inputs Generated by the Plan ',

The question of how to generate a plan given an alphabet and a kinetic state machine,
is an open one and it largely depends on the task and the planner. In section 3 we describe
a path planner for nonholonomic robots. Before we discuss the features of the planner we
introduce some more definitions that help formalize measures to evaluate the performance

of a plan.

2.1 Performance Measure of a Plan

At first, it appears that, to generate a plan to steer a system from a given initial state
zp to a final state x¢ requires complete a prior: information of the world, which is not

available in many instances of path planning. In the absence of such complete a priori

10



information about the world W, then the planning system has to generate a sequence of
plans based on the limited information about W that it has, which when concatenated
will achieve the required goal. We refer to these plans that are generated on limited
information to achieve some subgoal as partial plans T'’. The plan to steer the system
from a given initial state z, to a final state z; is then determined after the system has
reached the final state and is: I' = f‘\lpf‘\zp . -f;,p where f‘:-p is the partial plan consisting

of only those behaviors and atoms in each behavior that have been executed for ¢ > 0.

Remark: As a partial plan is generated with limited information of the world, not all
the behaviors and not every atom in a behavior generated by the partial plan may be

executed at run time for the following reasons:

(i) Let us consider a behavior m; = 030104---0,. Let us assume that the atom o3 is
interrupted by &; at £. Now as explained earlier o7 will begin to execute. But if & = &

the atom o, will not be executed and depending on &, o4 will begin to execute.

(ii) For practical reasons we introduce a hierarchy of interrupts. While a specific behavior
7; of partial plan is being executed, if a level O interrupt is received, the execution of
that particular atom is inhibited and the next atom in that behavior is executed just
as explained in (i) above. If a level 1 interrupt is received while a behavior is being
executed the execution of that behavior is now inhibited and the next behavior in the
partial plan is executed. Finally if a level 2 interrupt is received the execution of the

remainder of the current partial plan is stopped and a new partial plan is executed.

The length of a plan is given by || = 31, |m;| and the time of execution of the plan is
given by T(T') = ¥, T'(m;).

With these formal definitions, we can start discussing the performance of an algorithm
that uses these behaviors and analyzing some earlier algorithms for nonholonomic motion
planning.

Given an algorithm that generates a plan I' we define a candidate measure of perfor-

mance O(T') of the plan as
(") =T(T') + 7|T| (8)

11



where 7 is a normalizing factor having the units of time. (One need not limit oneself to

such additive combinations although this is the only case used here.)

Defining a performance measure for a path planner is a difficult task as it is dependent
on the goal the robot seeks to achieve. Some path planners use the total time to achieve
the goal as a measure of performance. In many situations one might be interested in not
only the time but also on the smoothness of the path traversed or the number of times
switching between different controls was necessary. For example consider the task of
parallel parking of a car. One might be able to achieve the goal by using only open-loop
controls but switching between them at regular intervals, hence possibly reducing the
time to achieve the goal but compromising on the smoothness of the path. On the other
hand if one uses a time dependent feedback law, the same task could be achieved, possibly
by moving along a smooth trajectory at the risk of taking longer time to achieve the goal.
This indicates a trade-off between two competing requirements which is captured by the

performance measure (8).

We now define the optimal performance of a plan as
O (D) optimar = min{T(I') + 7|T|}. (9)

Here the minimization is performed over the subset of plans generated by the subset B
of admissible behaviors. Depending on the kinetic state machine and the choice of the
planner one can now place bounds on the optimal performance and hence compare the
performance of different planners given the same language or that of the planner given a

new language. This is illustrated in the example given below.

Example 2: Consider the problem of steering the unicycle from a given initial location
% to zg. The equations of the unicycle are given in example 1. Let us assume that
the language is based on the following atoms. oy = (Uy,&1,1), 02 = (Us,&,1) where
Uy, &, Us, & are as defined in example 1. Let o € [—5,+5] and § € (0, 00).

Let us also assume that the planner did not have complete information about the
world and had to generate n partial plans to achieve the goal. Each partial plan consists

of steering the unicycle from z; to z; (see Fig 3) such that there are no obstacles in some

12



small neighborhood of the line segment joining these two locations. Let us make a further
assumption that the planner uses ; € [1, —1] as the scaling factor while generating partial

plans.

Figure 3: Partial Plan Generation

From the kinematic equations of the unicycle we know that a simple partial plan to
steer a unicycle from z; = (z;,¥i, 0;) to z; = (z;,y;,6;) would be :

(i) turn by (8,,z; — 6;),

(ii) move by a distance d; and

(iii) finally turn by (6, —0.,,,),
where z;z; is the vector in R? joining (z;,v;) and (z;,y;), di = ||ziz;||, and 0., is the
orientation of the vector w.r.t. to the x-axis.

We can rewrite this simple algorithm as a partial plan derived from the language

using the atomic behaviors m = 0; and my = 09,
I?; = {(0:1/10i1], 10i1])o2 (1, di)or (6:2/10:2], |632]) 02}

where 6;; and 0;, are the angles of the two turns as described above of the ith partial

plan. Hence the plan to steer the system from 2, to z; is given by
L= {I"I?,...I?%,}

13



Given a plan we now illustrate how bounds can be placed on the optimal performance

based on the knowledge of the kinetic state machine and the language. Let dpep =

maz ||2;z;]].
Tmaez (Fpi) < 27+ dpgz + 27
< AT + dias-
and
|Fpi|ma,z <3
Hence,

0 <O <3n+n(4r + dneg)-

However, as we are using only open-loop controls, we know from the kinematics of the
system that given an initial state z, and a final state z; both the behaviors (a, £;)0;
and (koy, B;/k)o; would steer the kinetic state machine from the initial state to the final

state. Hence we could replace (o, 5;)o; by (kay, 8i/k)o;.

Observe that in the generation of the above partial plan and in the calculation of the
performance measure we restricted «; to {—1,1} (in some sense placed bounds on the
velocity of the unicycle) because the planner did not have complete information about

the world. But since the language permits o; € [—5, 5], we have

n(47 + dmag)

3 + 3n.

0 S e(P)optimal S

Having placed bounds on a plan generated by one set of behaviors we can now compare
the performance of another set of behaviors (for example, one using periodic functions

to steer the robot) against these bounds.

In the above examples we have used very simple controls in our alphabet. But one
should note that depending on the application, a wide variety of controls (open loop and
closed loop) could be included in the alphabet and some examples of such controls can

be found in [1, 2, 3, 7, 8, 9, 17]

14



The question of how to generate a plan given an alphabet and a kinetic state machine,
is an open one and it largely depends on the task. In the next section we describe a control

architecture and a few details of a path planner for nonholonomic robots.

3 Hybrid Architecture

As we seek to attain higher levels of autonomy in robots, the need for hierarchical and
distributed control schemes becomes apparent. Motivated in part by the hierarchical
structure of neuromuscular control system we present a control architecture (see Fig. 4),
to generate and execute plans to achieve a given task. (To avoid clutter, only one level
of interrupts is given.) The lowest level is the kinetic state machine with sensors, where
the sensors are used in a low-level feedback loop. The planner could be interpreted as
the higher end of the system where sensory information has been processed to generate
goal-related trajectory information. The layered and distributed nature of the control
becomes apparent when one observes that once a plan has been generated each level
and even various modules at the same level (e.g. cleanup and plan) continue to execute

independently.

The task of the planner is to use the limited-range sensor information, to generate
partial plans that result in collision-free feasible trajectories. Planning is done at two lev-
els - global and local. For local planning, obstacle free (non)feasible paths are generated
using potential functions assuming that the robot is holonomic. A partial plan (feasible
path) is then generated that obeys the constraints in the configuration variables. As
feasible trajectories are only approximations to the trajectories generated using potential
functions, collision with obstacles could occur while tracing them. While the robot is
in motion, collisions are avoided by using the sensor information to trigger interrupts as

described previously.

At a global level, heuristics along with the world map generated while the robot is

en route to the goal are used to solve the problem of cycles.

Once a partial plan has been generated it is executed as explained in section 2. Let us

15



assume that an atom (U, &;, T;) is executed at time ¢t = ¢o. In Fig. 4, T is a timer whose
output is 1 (active high) while ¢y < ¢ < T; and is 0 (active low) if ¢ > ¢o + T;. &(s(¢))
returns an interrupt (active low) to the system when conditions defined by &;(s(t)) are
satisfied. Observe here that the interrupt could be of level 2,1 or 0. Hence the functioning
of the AND gates in the kinetic state machine can be interpreted as follows - if either the
robot receives an interrupt or t > ty + T; the input to gate II is an active low and hence
the input to the kinetic state machine is inhibited i.e. the current atom/behavior/partial
plan (depending on the interrupt level) is stopped and the next atom/behavior/partial

plan in the queue is executed (see Remark (ii) in section 2.1).

Fig. 5 shows a simulation of the path generated by the planner. As the partial plans
are generated based on local information (denoted by obstacle free disks in Fig. 5),
the paths initially generated are locally optimal. As the knowledge of the environment
increases, the performance of the system improves. Fig 6 shows an example of a plan
generated before and after partial knowledge of the world has been gained. The bold
solid lines denote the new trajectories(partial plans). Observe that the length of the plan

has decreased by less than a third. More details on the planner can be found in [18].

4 Final Remarks

The motion description language along with the control architecture serves as an ab-
straction between continuous and discrete time control strategies. Current directions
of research include continuing formalization of behavior-based robotics. This includes
expanding the alphabet to include multiple kinetic state machines and communication
protocols between these machines. We are also working on extending the technique used

by the planner to generate plans in the presence of moving obstacles.

11t should be pointed out here that the obstacle-free disks generated by the planner are not entirely
obstacle free, but this is because in the simulator we have used only sensors of the ‘eye’ to generate
obstacle-free disks. For now, those obstacles that are not detected by the sensors are treated as being

in the blind spots of the robot.

16



' CARTOGRAPHER LANGUAGE : X'
b | SCALING
:WORLD MAP ' FACTORS : (o, B)
ALPHABET : X
CLEANUP
LOCAL MAP

|

|

| l

S (1) ] D :

|

| | ? I |

! |

i . |

- PREPROCESSOR | Cx(D=B(OU ||
S e | |
R + | x(t)i |
SENSORS 'Kinetic State Machine |

Figure 4: Hybrid Control Architecture

5 Acknowledgments

We would like to thank Roger Brockett for sharing freely his insights on hybrid systems.

We would also like to thank Gregory Walsh for his critical comments on a draft of this

paper.

17



- Obstacles

Q Obstacle free disks

Figure 5: Paths Generated by the Planner

18



SN SRR S

Q Obstacle free disk R /
Y ]

Path generated after the robot has  * |
— partial knowledge of the world N

Figure 6: Paths Generated by the Planner

19



References

[1]

(3]

[4]

[5]

[6]

8]

[9]

G.Campion, B.d’Andrea-Novel, and G. Bastin. Controllability and state feedback
stabilizability of nonholonomic mechanical systems. In Lecture Notes in Control and

Information Sciences, pages 107-124. Springer-Verlag, 1990.

R. M. Murray and S. S. Sastry. Steering nonholonomic systems using sinusoids. In
Proceedings of the 29th IEEE Conference on Decision and Control, pages 2097-2101,
Honolulu,HI, December 1990.

H.J. Sussmann. Local controllability and motion planning for some classes of systems
without drift. In Proceedings of the 30th Conference on Decision and Control, pages
1110-1114, Brighton, England, December 1991. IEEE.

C. Fernandes, L. Gurvits, and Z.X. Li. Foundations of nonholonomic motion plan-
ning. In Z. X. Li and J. F. Canny, editors, Nonholonomic Motion Planning. Kluwer
Academic, 1993.

R. W. Brockett. Control theory and singular Riemannian geometry. In New Direc-

tions in Applied Mathematics, pages 13-27. Springer-Verlag, 1982.

R. W. Brockett. Asymptotic stability and feedback stabilization. In Differential
Geometric Control Theory, pages 181-191. Birkhauser, 1983.

C. Canudas de Wit and O.J. Sordalen. Exponential stabilization of mobile
robots with nonholonomic constraints. IEEE Transactions on Automatic Control,

37(11):1791-1797, November 1992.

J.-M. Coron. Global asymptotic stabilization for controllable systems. Mathematics

of Control, Signals and Systems, 5(3), 1992.

J.B. Pomet. Explicit design of time-varying stabilizing control laws for a class of

controllable systems without drift. Systems and Control letters, 18:147-158, 1992.

20



[10]

[11]

12

[13]

[14]

[15]

[16]

[17]

18]

R.M. Murray, Z. Li, and S.S. Sastry. A Mathematical Introduction to Robotic Ma-
nipulation. CRC Press, 1994.

R.A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1):14-23, 1986.

R.W. Brockett. Formal languages for motion description and map making. In

Robotics, pages 181-193. American Mathenmatical Society, 1990.

R. W. Brockett. Hybrid models for motion control. In H. Trentelman and J. C.

Willems, editors, Perspectives in Control, pages 29-51. Birkhauser Verlag, 1993.

R.M.Murray, D.C.Deno, K.S.J. Pister, and S.S.Sastry. Control primitives for robot
systems. IEEE Transactions on Systems, Man, and Cybernetics, 22(1):183-193,
January/February 1992.

N. Bernstein. The Co-ordination and Regulation of Movement. Pergamon Press,

Oxford, 1967.

Robert Hermann. Accessibility problems for path systems. In Differential Geom-
etry and the Calculus of Variations, chapter 18, pages 241-257. Math Sci Press,
Brookline, MA, 1968. 2nd Edition.

Naomi Erich Leonard and P.S. Krishnaprasad. Averaging for attitude control and
motion planning. In Proceedings for the 32nd Conference on Decision and Control,

pages 3098-3104, Dec 1993.

Vikram Manikonda. A hybrid control strategy for path planning and obstacle avoid-
ance with nonholonomic robots. Master’s thesis, University of Maryland, College

Park, 1994 (also Institute for Systems Research Thesis Report M.S. 94-8).

21



